
Computer Science & Programming
Lecture 1: Computer Organization

Stephen Huang
January 23, 2023

1

2

Contents
1. Computer Organization
2. Representation of Information *

3

1. Computer Organization
• A computer has the following functional

components:
– CPU (Central Processing Unit)

• Control Unit
• Arithmetic and Logic Unit (ALU)

– Main Memory
– Secondary Memory
– Input Devices
– Output Devices

Components of a Computer

4

Main
Memory

Secondary
Memory

Output
Device

Input Device

Control
Unit

ALU
CPU

5

The Control Unit
• The control unit of the CPU controls all

operations of the computer.
• It works in a cycle. Each cycle

– fetches the next instruction of the program currently
being executed,

– interprets (decodes) the instruction to determine
what should be done,

– executes the instruction.

• This cycle is sometimes summarized as
fetch/decode/execute.

6

CPU: Control Unit
• To add two numbers, the control unit does the

following:
– Load the two numbers to ALU from the memory
– Perform the addition in ALU
– Copy the result to some specified memory cell

Example: Fetch/Decode/Execute

7

Main
Memory

Secondary
Memory

Output
Device

Input Device

Control
Unit

ALU
CPU

LOAD A

LOAD B

ADD

STORE

A -> B -> 15 315 3

Example: Fetch/Decode/Execute

8

Secondary
Memory

Output
Device

Input Device

Control
Unit

ALU
CPU

LOAD A

LOAD B

ADD

STORE 15

Main
Memory

A -> B -> 15 315 3

Example: Fetch/Decode/Execute

9

Secondary
Memory

Control
Unit

ALU
CPU

LOAD A

LOAD B

ADD

STORE 15 + 3 = 18

Output
Device

Input Device Main
Memory

A -> B -> 15 315 3

Example: Fetch/Decode/Execute

10

Secondary
Memory

Control
Unit

ALU
CPU

LOAD A

LOAD B

ADD

STORE 18

Output
Device

Input Device Main
Memory

A -> B -> 15 315 3

11

ALU
• The arithmetic and logic unit, ALU, is responsible

for performing
– Arithmetic calculations involving addition, subtraction,

multiplication, and division and
– Logical operations such as the test i < n.

• The ALU uses arithmetic registers to store the
numbers involved in a calculation or logical
operation.

12

The Control Unit
• The control unit (ALU) uses

– a program counter to store the address of the next
instruction to be fetched and

– an instruction register to keep the current instruction
being decoded and executed.

Instructions:

..
Load x into R1
Load y into R2
Add R1 and R2
..

110
120
130
140
150

“Add R1 and R2”

Program
counter

Instruction
Register

13

The Control Unit
• The faster this basic cycle can be performed, the

faster the computer can execute a program.
• The speed of a computer is usually stated as

some number of
– Megahertz (million cycles per second) or
– Gigahertz (billion cycles per second).

Intel's 12th Gen i9
processor can hit 5.5
GHz on up to two
cores.

14

The Main Memory
• Main memory consists of memory cells, each of

which can store a sequence of binary digits
(bits) that represent
– an instruction, or
– a data value.

• The memory necessary to store a single
character is called a byte.

• Each byte consists of 8 bits.

15

Memory Address
• The bytes of memory are numbered sequentially

from 0 to n-1, where n is the number of bytes in
the computer's main memory.

• This number, referred to as the address of the
byte, serves to identify the memory location.

• Memory addresses are also used in some
instructions. The information stored in memory
can be sensed (read) by the computer change.

• However, if the computer stores new information
in memory, it destroys the old information in it.

Main Memory

16

010001000000010001010100

0100011101100100 0110010101011100

0000000000000000

01000100

0 202 203 208

300 301 302 303

n-2 n-1

bit Byte

WordAddress

Main Memory

17

010001000000010001010100

0100011101100100 0110010101011100

0000000000000000

01000100

0 202 203 208

300 301 302 303

n-2 n-1

Integer 1092 Character D

An instruction

18

Addresses
• High-level programming languages like C++ or

Python use variable names to refer to values stored
in memory.

• This makes referring to stored values much more
manageable than remembering an address.

• For example, if a programmer in C++ declares a
variable, say i, to be of type integer, then the
compiler associates this name with some bytes of
memory, say bytes 202-203 in the above picture.

19

Addresses
• Then instead of referring to its address, we can

use a meaningful variable name in the program.
• However, some C++ instructions that use

addresses (pointers), and you need to be
familiar with the notion of a memory address.

• Luckily, there are no pointers in Python.

Von Neumann Architecture

20

• John von Neumann
made modern
computing possible by
bridging the gap
between instructions
and data.

21

Von Neumann Architecture

Memory Addresses

22

00000100

00000000

01010100

01000111

01100100

01100101

01011100

00000000

01000100

01000100

0

…

201

202

203

204

205

206

207

208

…

n-1

00000000

00000000

…

i = i + 1;

print ch;

…

1092

“D”

variable type Starting
address

…
i int 202
ch char 208

23

Secondary Memory
• Secondary memory provides permanent and

large-scale storage of information.
• The most common secondary storage devices

are magnetic disks that record information in a
magnetic form.
– Floppy disks
– Hard disks
– CD-ROMs
– Flash memory

24

Input Devices
• The input devices allow information to be

inputted into the computer.

• The most common input devices are the
keyboard and mouse.

25

Output Devices
• The output devices allow information to be

outputted from the computer to the user.

• The most common output devices are the
monitor and printer.

26

2. Representation of Information
• All information stored in a computer's memory

is binary, i.e., a sequence of binary digits (bits).

• This may include:
– Numbers (integer, floating-point numbers, etc.)
– Boolean Values (True, False)
– Strings
– Addresses (memory)
– Instructions

27

Numbers
• We are used to writing numbers in decimal.

– Decimal (integer) numbers are written as a sequence
of decimal digits, 0-9.

– The position of a digit determines what it stands for.

– The rightmost digit is thought of as multiplied by 1,
the next digit is thought of as multiplied by 10, the
next by 100, etc.

– In other words, each digit from right to left is
multiplied by the next power of 10.

28

Number Systems

0 0 0 0 3 8 0 1

107

106

105

104

103

102

101

100

10000000

1000000

100000

10000

1000

100

10

1

For example,
the decimal
integer 3801
stands for the
number 1*1 +
0*10 + 8*100 +
3*1000.

29

Example: Decimal Number

0 0 0 0 3 8 0 1

107

106

105

104

103

102

101

100

00000000

0000000

000000

00000

3000

800

00

1

For example,
the decimal
integer 3851
stands for the
number 1*1 +
0*10 + 8*100 +
3*1000.

3801

30

Binary Numbers
• The binary number system represents an integer

by a sequence of bits, 0, 1.
• The rightmost bit is thought of as multiplied by

1, the next bit from the right is multiplied by 2,
the next by 4, etc.

• For example, the binary integer 100101 stands
for the number 1*1 + 0*2 + 1*4 + 0*8 + 0*16
+ 1*32 which is 37 in decimal.

• In a computer that stores integers in 2 bytes (or
16 bits), this number would be stored as
00000000 00100101.

31

Example: Binary Number

0 0 1 0 0 1 0 1

27

26

25

24

23

22

21

20

128

64

32

16

8

4

2

1

37

• How do you convert a decimal integer into binary?
• One method is to divide the decimal number by 2

repeatedly.
• The remainder of the division is the next bit from

right to left.
• The quotient is then used in the subsequent

division.
– The binary representation of the decimal number 37 is

00100101.
– If this is stored in 2 bytes, then the leading bits are all 0,

giving the result 00000000 00100101.

32

Decimal to Binary

Number
(Divide by 2)

Quotient Remainder

37/2 18 1

18/2 9 0

9/2 4 1

4/2 2 0

2/2 1 0

1/2 0 1

0 0 0

0 0 0

33

Decimal to Binary

Stop

00100101

Summary
• Computer organization.
• Memory address.
• Binary numbers.

– Converting between binary and decimal
• Variables.

34

Expected Outcomes
• Take a decimal number and convert it to a

binary number.
• Take a binary number and convert it to a

decimal number.

• Note: We only showed non-negative integer
numbers in this lecture.

35

	Computer Science & Programming�Lecture 1: Computer Organization
	Contents
	1. Computer Organization
	Components of a Computer
	The Control Unit
	CPU: Control Unit
	Example: Fetch/Decode/Execute
	Example: Fetch/Decode/Execute
	Example: Fetch/Decode/Execute
	Example: Fetch/Decode/Execute
	ALU
	The Control Unit
	The Control Unit
	The Main Memory
	Memory Address
	Main Memory
	Main Memory
	Addresses
	Addresses
	Von Neumann Architecture
	Von Neumann Architecture
	Memory Addresses
	Secondary Memory
	Input Devices
	Output Devices
	2. Representation of Information
	Numbers
	Number Systems
	Example: Decimal Number
	Binary Numbers
	Example: Binary Number
	Decimal to Binary
	Decimal to Binary
	Summary
	Expected Outcomes

