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1. Computer Organization
• A computer has the following functional 

components:
– CPU (Central Processing Unit)

• Control Unit
• Arithmetic and Logic Unit (ALU)

– Main Memory
– Secondary Memory
– Input Devices
– Output Devices



Components of a Computer
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The Control Unit
• The control unit of the CPU controls all 

operations of the computer. 
• It works in a cycle.  Each cycle 

– fetches the next instruction of the program currently 
being executed, 

– interprets (decodes) the instruction to determine 
what should be done, 

– executes the instruction. 

• This cycle is sometimes summarized as 
fetch/decode/execute. 
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CPU: Control Unit
• To add two numbers, the control unit does the 

following:
– Load the two numbers to ALU from the memory
– Perform the addition in ALU
– Copy the result to some specified memory cell



Example: Fetch/Decode/Execute
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Example: Fetch/Decode/Execute
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ALU
• The arithmetic and logic unit, ALU, is responsible 

for performing 
– Arithmetic calculations involving addition, subtraction, 

multiplication, and division and 
– Logical operations such as the test i < n. 

• The ALU uses arithmetic registers to store the 
numbers involved in a calculation or logical 
operation. 
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The Control Unit
• The control unit (ALU) uses 

– a program counter to store the address of the next 
instruction to be fetched and 

– an instruction register to keep the current instruction 
being decoded and executed. 

Instructions:

..
Load x into R1
Load y into R2
Add R1 and R2
..

110
120
130
140
150

“Add R1 and R2”

Program 
counter

Instruction 
Register
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The Control Unit
• The faster this basic cycle can be performed, the 

faster the computer can execute a program. 
• The speed of a computer is usually stated as 

some number of 
– Megahertz (million cycles per second) or 
– Gigahertz (billion cycles per second).

Intel's 12th Gen i9 
processor can hit 5.5 
GHz on up to two 
cores. 
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The Main Memory
• Main memory consists of memory cells, each of 

which can store a sequence of binary digits 
(bits) that represent 
– an instruction, or 
– a data value. 

• The memory necessary to store a single 
character is called a byte. 

• Each byte consists of 8 bits. 
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Memory Address
• The bytes of memory are numbered sequentially 

from 0 to n-1, where n is the number of bytes in 
the computer's main memory.

• This number, referred to as the address of the 
byte, serves to identify the memory location. 

• Memory addresses are also used in some 
instructions. The information stored in memory 
can be sensed (read) by the computer change. 

• However, if the computer stores new information 
in memory, it destroys the old information in it. 



Main Memory
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Main Memory
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010001000000010001010100

0100011101100100 0110010101011100

0000000000000000

01000100

0              202       203           208

300       301       302       303

n-2       n-1

Integer  1092 Character  D

An instruction
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Addresses
• High-level programming languages like C++ or 

Python use variable names to refer to values stored 
in memory. 

• This makes referring to stored values much more 
manageable than remembering an address. 

• For example, if a programmer in C++ declares a 
variable, say i, to be of type integer, then the 
compiler associates this name with some bytes of 
memory, say bytes 202-203 in the above picture. 
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Addresses
• Then instead of referring to its address, we can 

use a meaningful variable name in the program. 
• However, some C++ instructions that use 

addresses (pointers), and you need to be 
familiar with the notion of a memory address.

• Luckily, there are no pointers in Python.



Von Neumann Architecture
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• John von Neumann 
made modern 
computing possible by 
bridging the gap 
between instructions 
and data.
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Von Neumann Architecture



Memory Addresses
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00000100

00000000

01010100

01000111

01100100

01100101

01011100

00000000

01000100

01000100

0

…

201

202

203

204

205

206

207

208

…

n-1

00000000

00000000

…

i = i + 1;

print ch;

…

1092

“D”

variable type Starting 
address

…
i int 202
ch char 208
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Secondary Memory
• Secondary memory provides permanent and 

large-scale storage of information. 
• The most common secondary storage devices 

are magnetic disks that record information in a 
magnetic form. 
– Floppy disks
– Hard disks
– CD-ROMs
– Flash memory
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Input Devices
• The input devices allow information to be 

inputted into the computer. 

• The most common input devices are the 
keyboard and mouse. 
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Output Devices
• The output devices allow information to be 

outputted from the computer to the user.  

• The most common output devices are the 
monitor and printer. 
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2. Representation of Information
• All information stored in a computer's memory  

is binary, i.e., a sequence of binary digits (bits). 

• This may include:
– Numbers (integer, floating-point numbers, etc.)
– Boolean Values (True, False)
– Strings
– Addresses (memory)
– Instructions
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Numbers
• We are used to writing numbers in decimal. 

– Decimal (integer) numbers are written as a sequence 
of decimal digits, 0-9. 

– The position of a digit determines what it stands for. 

– The rightmost digit is thought of as multiplied by 1, 
the next digit is thought of as multiplied by 10, the 
next by 100, etc. 

– In other words, each digit from right to left is 
multiplied by the next power of 10. 
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Number Systems
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For example, 
the decimal 
integer 3801 
stands for the 
number 1*1 + 
0*10 + 8*100 + 
3*1000. 
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Example: Decimal Number
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Binary Numbers
• The binary number system represents an integer 

by a sequence of bits, 0, 1. 
• The rightmost bit is thought of as multiplied by 

1, the next bit from the right is multiplied by 2, 
the next by 4, etc. 

• For example, the binary integer 100101 stands 
for the number 1*1 + 0*2 + 1*4 + 0*8 + 0*16 
+ 1*32 which is 37 in decimal. 

• In a computer that stores integers in 2 bytes (or 
16 bits), this number would be stored as 
00000000 00100101. 
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Example: Binary Number
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• How do you convert a decimal integer into binary? 
• One method is to divide the decimal number by 2 

repeatedly.
• The remainder of the division is the next bit from 

right to left. 
• The quotient is then used in the subsequent  

division. 
– The binary representation of the decimal number 37 is 

00100101. 
– If this is stored in 2 bytes, then the leading bits are all 0, 

giving the result 00000000 00100101.
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Decimal to Binary



Number
(Divide by 2)

Quotient Remainder

37/2 18 1

18/2 9 0

9/2 4 1

4/2 2 0

2/2 1 0

1/2 0 1

0 0 0

0 0 0

33

Decimal to Binary

Stop

00100101



Summary
• Computer organization.
• Memory address.
• Binary numbers.

– Converting between binary and decimal
• Variables.
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Expected Outcomes
• Take a decimal number and convert it to a 

binary number.
• Take a binary number and convert it to a 

decimal number.

• Note: We only showed non-negative integer 
numbers in this lecture. 
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