Computer Science & Programming Lecture 1: Computer Organization

Stephen Huang January 23, 2023

Contents

- 1. Computer Organization
- 2. <u>Representation of Information</u> *

1. Computer Organization

- A computer has the following functional components:
 - CPU (Central Processing Unit)
 - Control Unit
 - Arithmetic and Logic Unit (ALU)
 - Main Memory
 - Secondary Memory
 - Input Devices
 - Output Devices

Components of a Computer

The Control Unit

- The control unit of the CPU controls all operations of the computer.
- It works in a cycle. Each cycle
 - fetches the next instruction of the program currently being executed,
 - interprets (decodes) the instruction to determine what should be done,
 - executes the instruction.
- This cycle is sometimes summarized as fetch/decode/execute.

CPU: Control Unit

- To add two numbers, the control unit does the following:
 - Load the two numbers to ALU from the memory
 - Perform the addition in ALU
 - Copy the result to some specified memory cell

ALU

- The arithmetic and logic unit, ALU, is responsible for performing
 - Arithmetic calculations involving addition, subtraction, multiplication, and division and
 - Logical operations such as the test i < n.
- The ALU uses arithmetic registers to store the numbers involved in a calculation or logical operation.

The Control Unit

- The control unit (ALU) uses
 - a program counter to store the address of the next instruction to be fetched and
 - an instruction register to keep the current instruction being decoded and executed.

The Control Unit

- The faster this basic cycle can be performed, the faster the computer can execute a program.
- The speed of a computer is usually stated as some number of
 - Megahertz (million cycles per second) or
 - Gigahertz (billion cycles per second).

Intel's 12th Gen i9 processor can hit 5.5 GHz on up to two cores.

The Main Memory

- Main memory consists of memory cells, each of which can store a sequence of binary digits (bits) that represent
 - an instruction, or
 - a data value.
- The memory necessary to store a single character is called a byte.
- Each byte consists of 8 bits.

Memory Address

- The bytes of memory are numbered sequentially from 0 to n-1, where n is the number of bytes in the computer's main memory.
- This number, referred to as the address of the byte, serves to identify the memory location.
- Memory addresses are also used in some instructions. The information stored in memory can be sensed (read) by the computer change.
- However, if the computer stores new information in memory, it destroys the old information in it.

Main Memory

Main Memory

Addresses

- High-level programming languages like C++ or Python use variable names to refer to values stored in memory.
- This makes referring to stored values much more manageable than remembering an address.
- For example, if a programmer in C++ declares a variable, say *i*, to be of type integer, then the compiler associates this name with some bytes of memory, say bytes 202-203 in the above picture.

Addresses

- Then instead of referring to its address, we can use a meaningful variable name in the program.
- However, some C++ instructions that use addresses (pointers), and you need to be familiar with the notion of a memory address.
- Luckily, there are no pointers in Python.

Von Neumann Architecture

Harvard Architecture

Von Neumann Architecture

Von Neumann Architecture

 John von Neumann made modern computing possible by bridging the gap between instructions and data.

Memory Addresses

Secondary Memory

- Secondary memory provides permanent and large-scale storage of information.
- The most common secondary storage devices are magnetic disks that record information in a magnetic form.
 - Floppy disks
 - Hard disks
 - CD-ROMs
 - Flash memory

Input Devices

• The input devices allow information to be inputted into the computer.

• The most common input devices are the keyboard and mouse.

Output Devices

• The output devices allow information to be outputted from the computer to the user.

• The most common output devices are the monitor and printer.

2. Representation of Information

- All information stored in a computer's memory is binary, i.e., a sequence of binary digits (bits).
- This may include:
 - Numbers (integer, floating-point numbers, etc.)
 - Boolean Values (True, False)
 - Strings
 - Addresses (memory)
 - Instructions

Numbers

- We are used to writing numbers in decimal.
 - Decimal (integer) numbers are written as a sequence of decimal digits, 0-9.
 - The position of a digit determines what it stands for.
 - The rightmost digit is thought of as multiplied by 1, the next digit is thought of as multiplied by 10, the next by 100, etc.
 - In other words, each digit from right to left is multiplied by the next power of 10.

Number Systems

For example, the decimal integer 3801 stands for the number 1*1 + 0*10 + 8*100 + 3*1000.

Example: Decimal Number

For example, the decimal integer 3851 stands for the number 1*1 + 0*10 + 8*100 + 3*1000.

Binary Numbers

- The binary number system represents an integer by a sequence of bits, 0, 1.
- The rightmost bit is thought of as multiplied by 1, the next bit from the right is multiplied by 2, the next by 4, etc.
- For example, the binary integer 100101 stands for the number 1*1 + 0*2 + 1*4 + 0*8 + 0*16 + 1*32 which is 37 in decimal.
- In a computer that stores integers in 2 bytes (or 16 bits), this number would be stored as 00000000 00100101.

Example: Binary Number

Decimal to Binary

- How do you convert a decimal integer into binary?
- One method is to divide the decimal number by 2 repeatedly.
- The remainder of the division is the next bit from right to left.
- The quotient is then used in the subsequent division.
 - The binary representation of the decimal number 37 is 00100101.
 - If this is stored in 2 bytes, then the leading bits are all 0, giving the result 0000000 00100101.

Decimal to Binary

Stop	Number (Divide by 2)	Quotient	Remainder
	37/2	18	
	18/2	9	
	9/2	4	1
	4/2	2	0
	2/2	1	0
	1/2	0	1
	0	0	0
	0	0	0

Summary

- Computer organization.
- Memory address.
- Binary numbers.
 - Converting between binary and decimal
- Variables.

Expected Outcomes

- Take a decimal number and convert it to a binary number.
- Take a binary number and convert it to a decimal number.
- Note: We only showed non-negative integer numbers in this lecture.